

A utilização de *smartphones* na monitorização do ruído

Patrícia Susana Contente Pereira

Dissertação em Engenharia do Ambiente, Perfil de Gestão e Sistemas Ambientais Orientador: Prof. Doutor Francisco Manuel Freire Cardoso Ferreira

Sumário

I. Introdução

II. Objetivos

III. Metodologia

IV. Sistema participativo de monitorização do ruído

V. Resultados

VI. Conclusões

I. Introdução

Ruído – qualquer som desagradável ou indesejável

 Principais fontes de ruído: tráfego, indústria e atividades de lazer

 A poluição sonora é um dos principais problemas ambientais, causando efeitos adversos na saúde da população

A monitorização do ruído ambiente é essencial

Quercus prepara-se para apresentar queixa contra Portugal por causa do ruído

de chamar a atenção para a falta de cumprimento amunitária sobre o ruido nas grandes

População queixa-se de pur bares em zona resid

Ruído muito acima dos limites legais em Lisboa -los preocupantes, sobretudo no centro da capital. A associação via se até Março os municípios continuarem a não

Medições da Q

promete apre eumorie a lo Mais de cem queixas contra a tolerância do ruído

Provedor de Justiça recebe num ano um avultado número de reclamações por causa do barulho.

II. Objetivos

Avaliar a utilização de um *smartphone* na monitorização do ruído ambiente

 Analisar a implementação de um sistema de monitorização com dupla finalidade

III. Metodologia

de ruído Sistema de mo

Definição dos diversos componentes do sistema de monitorização

Utilização do sistema de monitorização

Análise e seleção de aplicação móvel

Seleção de uma rede social

Incorporação de aplicação Web

Comparação sonómetro/aplicação móvel em diferentes ambientes acústicos

Caracterização de diferentes ambientes de tráfego interiores

Avaliação de diferentes estratégias de medição para mapeamento de ruído

Avaliação da participação dos cidadãos no sistema de monitorização

Definição dos diversos componentes do sistema de monitorização

Análise e seleção de aplicação móvel

Definição de requisitos

 Pesquisa em loja de aplicações móveis

Seleção de uma rede social Criação de uma página em rede social

Incorporação de aplicação Web

 Pesquisa de gadgets web para visualização de dados georreferenciados

Utilização do sistema de monitorização

Comparação sonómetro/aplicação móvel em diferentes ambientes acústicos

Caracterização de diferentes ambientes de tráfego interiores

Avaliação de diferentes estratégias de medição para mapeamento de ruído

Avaliação da participação dos cidadãos no sistema de monitorização

Comparação Sonómetro/Aplicação móvel

Ruído Ambiente

Tráfego Rodoviário Tráfego Fluvial Tráfego Ferroviário

Tráfego Aéreo

Parâmetro de avaliação Nível sonoro contínuo equivalente -L_{eq} Avaliação 1:

Transporte ferroviário superficial

Avaliação 2:

Transporte ferroviário subterrâneo

Comparação Sonómetro/Aplicação móvel

• No de ensaios:

Duração:1 hora

Local:Av.FontesPereirade Melo

• Nº de ensaios:

Duração:15minutos

• Local: Praça do Comércio • Nº de ensaios:

Duração:15minutos

Local:
 Comboio
 Estação
 Sete Rios
 Metropo litano
 Estação
 Alameda

Tráfego fluvial

• Nº de ensaios: 2

Duração: variável

• Local: Cacilhas

• Nº de ensaios:

Duração:15minutos

Local:CidadeUniversi-tária

Equipamentos utilizados:

Smartphone HTC Explorer

Sonómetro Brüel & Kjær 2260 Investigator Parâmetro de avaliação Nível sonoro contínuo equivalente - L_{eq}

Caracterização de diferentes ambientes de tráfego interiores

Tráfego Rodoviário

Tráfego Ferroviário

Tráfego Fluvial

Avaliação 1:

Transporte individual

Automóvel (veículo ligeiro) Avaliação 2 e 3:

Transporte coletivo

Autocarro (veículo pesado)

Elétrico (veículo pesado) Avaliação 1:

Comboio (transporte ferroviário superficial)

Avaliação 2:

Metropolitano (transporte ferroviário subterrâneo)

Caracterização de diferentes ambientes de tráfego interiores

Automóvel

- No de ensaios: 3
- Duração: variável
- Troço: Marquês de Pombal — Av. da República

Autocarro

- No de ensaios 2
- Duração: variável
- Troço: Almada Lisboa

Elétrico

- No de ensaios: 2
- Troço: Cais do Sodré Belém

ferroviário

Tráfego '

Comboio

- Nº de ensaios:
- Duração: variável
- Troço:Belém Cais doSodré

Metropolitano

- Nº de ensaios: **2**
- Duração: variável
- Troço:Estação Alameda– EstaçãoOriente

• Nº de ensaios: 2

- Duração: variável
- Troço: Cacilhas – Cais do Sodré

Equipamento utilizado:

Smartphone HTC Explorer

Parâmetro de avaliação Nível sonoro contínuo equivalente

Avaliação de diferentes estratégias de medição para mapeamento de ruído

Medições estáticas

Medições em movimento

Avaliação 1:

Diferentes resoluções espaciais

Avaliação 2:

Diferentes períodos de medição

Avaliação de diferentes estratégias de medição para mapeamento de ruído

• Diferentes resoluções espaciais

Resoluções utilizadas:
 20 x 20 metros
 50 x 50 metros

• Local: Praça do Rossio

- Diferentes períodos de medição
 - Períodos de medição utilizados:

1 minuto 5 minutos

• Local: Praça do Rossio

• Área coberta: 1 km²

Duração:1:46 h

Local:
 Área circundante à Av.
 da Liberdade

Equipamento utilizado:

Smartphone HTC Explorer

Avaliação da participação dos cidadãos no sistema de monitorização

Praça do Rossio (Lisboa)

• Data: 19 de Junho de 2013

• Nº de inquéritos: 19

Praça S. João Baptista (Almada)

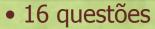
• Data: 19 de Junho de 2013

• Nº de inquéritos: 16

Locais de amostragem

Saldanha (Lisboa)

• Data: 20 de Junho de 2013


• Nº de inquéritos: 19

Parque das Nações (Lisboa)

• Data: 20 de junho de 2013

• Nº de inquéritos: 19

- Dados demográficos
- Perceção do ruído como problema ambiental
- Importância da participação pública
- Participação pública na monitorização do ruído
- Dados de caracterização

IV. Sistema participativo de monitorização do ruído

Análise e seleção de aplicação móvel para medição de níveis de ruído

Resumo da pesquisa de aplicações móveis

Requisitos	Decibelimetro	Sound Meter	Android Sound Meter	DeciBEL	WideNoise Plus	Noise Meter	NoiseWatch	NoiseDroid	NoiseTube Mobile
Medição de níveis sonoros em unidades dB(A)	*	✓	×	✓	*	✓	*	×	✓
Sujeita a procedimentos de calibração	✓	✓	\checkmark	√	*	×	✓	*	✓
Período de medição variável	*	×	×	×	*	✓	*	*	✓
Registo de medições em formato digital, no smartphone	*	×	x	×	×	✓	×	✓	✓
Registo completo dos níveis de ruído obtidos ao longo do período de medição	*	×	×	*	*	✓	*	*	✓
Níveis de ruído associados a sinal GPS	*	×	×	×	✓	×	✓	\checkmark	✓
Gratuita	✓	✓	✓	✓	✓	✓	✓	√	✓

Aplicação móvel – NoiseTube Mobile

Separador "gráfico" ativo

Nível de pressão sonora em tempo real (último valor L_{Aeq.1s})

> sonora Gráfico de níveis de pressão

 Aplicação móvel de sensoriamento participativo

 Mede o nível sonoro contínuo equivalente (L_{eq})

 Disponível para três sistemas operativos móveis: Java ME, Android e Apple iOS

Measuring

Pause Stop

Página em rede social e aplicação Web

Exemplo de página na rede social *Facebook*, associada ao sistema de monitorização

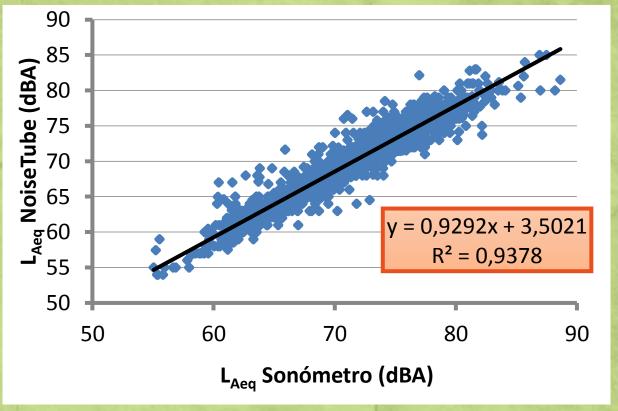
Visualização da aplicação *Web* inserida na página online do sistema de monitorização

V. Resultados

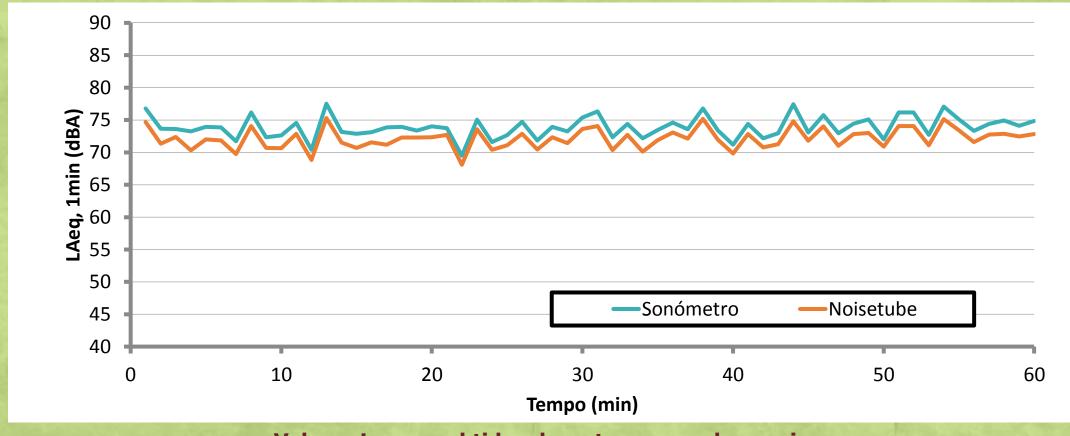
Comparação sonómetro/aplicação móvel em diferentes ambientes acústicos

Caracterização de diferentes ambientes acústicos de tráfego interiores

Avaliação de diferentes estratégias de medição para mapeamento de ruído


Avaliação da participação dos cidadãos no sistema de monitorização

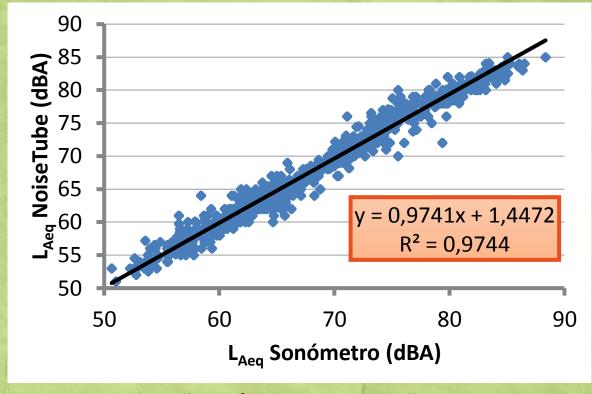
Ruído ambiente


Resultados globais do segundo ensaio

	Sonómetro	NoiseTube
L _{Aeq,1s mínimo} (dBA)	55,06	54
L _{Aeq,1s máximo} (dBA)	88,63	85
L _{Aeq,1h} (dBA)	74,22	72,41

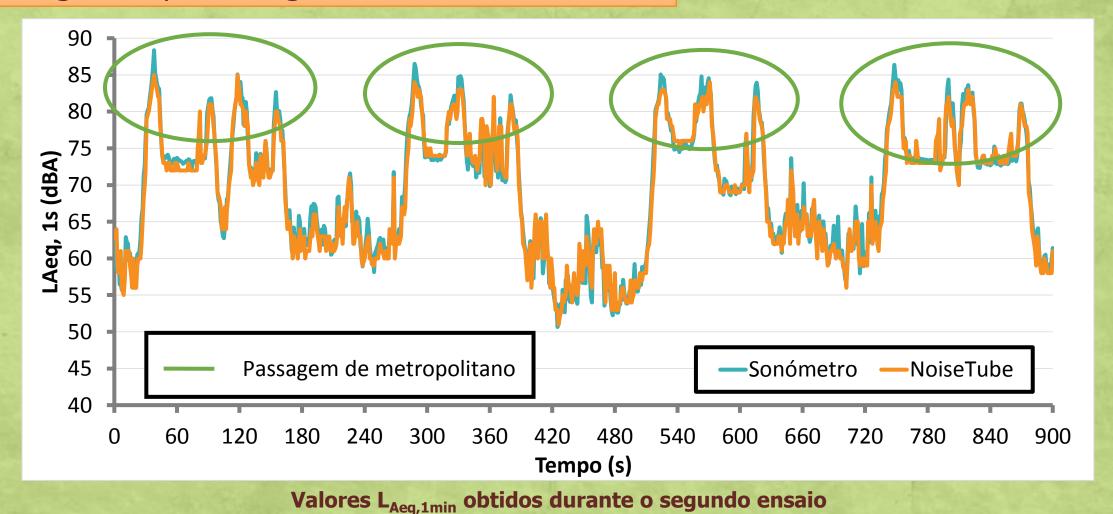
Representação gráfica da regressão linear (sem intersecção na origem) entre as medições realizadas para ruído ambiente (ensaio 2)

Ruído ambiente



Valores L_{Aeq,1min} obtidos durante o segundo ensaio

Ruído gerado por tráfego ferroviário subterrâneo


Resultados globais do segundo ensaio

	Sonómetro	NoiseTube
L _{Aeq,1s mínimo} (dBA)	50,64	51
L _{Aeq,1s máximo} (dBA)	88,36	85
L _{Aeq,15} min (dBA)	75,99	75,23

Representação gráfica da regressão linear (sem intersecção na origem) entre as medições realizadas para ruído gerado por tráfego ferroviário subterrâneo (ensaio 2)

Ruído gerado por tráfego ferroviário subterrâneo

A	Ambien	te aci	ústico

Ruído

ambiente

Ruído de

tráfego

rodoviário

Ruído de

tráfego

fluvial

Ruído de

tráfego ferroviário

superficial Ruído de

tráfego ferroviário

subterrâneo

Ruído de

tráfego aéreo

R²

0,62

0,94

0,67

0,64

0,04

0,00

0,85

0,92

0,94

0,97

0,90

0,86

p

<0,05

<0,05

<0,05

<0,05

<0,05

≥0,05

<0,05

<0,05

<0,05

<0,05

<0,05

<0,05

Resumo dos ensaios

L_{Aeq,1s}

mínimo

53

54

58

57

59

62

51

53

52

51

52

53

NoiseTube

L_{Aeq}

máximo

88

85

82

86

89

88

87

88

84

85

87

87

L_{Aeq}

71,49

72,41

70,57

71,33

77,18

80,90

74,94

76,65

70,37

75,23

70,53

72,88

Níveis sonoros Contínuos Equivalentes (dBA)

L_{Aeq}

72,98

74,22

71,10

71,84

71,98

72,12

76,27

77,09

71,45

75,99

61,25

63,38

Sonómetro

L_{Aeq,1s}

máximo

86,68

88,63

83,61

83,26

95,97

92,45

90,81

88,72

85,59

88,36

75,29

79,59

L_{Aeq,1s}

mínimo

59,5

55,06

59,74

58,96

60,08

61,74

51,37

53,42

51,43

50,64

52,36

52,34

Ensaio 1

Ensaio 2

Legenda: $0 \le R^2 < 0.5$ $0.5 \le R^2 < 0.75$ $0.75 \le R^2 < 0.85$ $0.85 \le R^2 \le 1$

p<0,05

p≥0,05

75

Caracterização de diferentes ambientes acústicos de tráfego interiores

Tráfego rodoviário

Transporte individual

	Condição de medição			
	1º Ensaio	2º Ensaio 3º Ensai		
	Vidros abertos	Vidros fechados		
L _{Aeq,1s mínimo} (dBA)	56	47	55	
L _{Aeq,1s máximo} (dBA)	77	71	79	
L _{Aeq} (dBA)	67,56	57,01	67,14	

		100	
Iranc	norta	CO	ATIVA
Trans	POI CC	CU	CLIVO

	Sistema de transporte				
	Elétrico A	rticulado	Autocarro		
	Ensaio 1 Ensaio 2		Ensaio 1	Ensaio 2	
L _{Aeq,1s} mínimo (dBA)	58	65	58	60	
L _{Aeq,1s} máximo (dBA)	81	83	76	81	
L _{Aeq} (dBA)	69,90	71,55	69,74	73,37	

Caracterização de diferentes ambientes acústicos de tráfego interiores

Tráfego ferroviário

	Sistema de transporte				
	Metropolitano		Comboio		
	Ensaio 1 Ensaio 2		Ensaio 1 Ensaio 2		
L _{Aeq,1s mínimo} (dBA)	59	57	60	60	
L _{Aeq,1s máximo} (dBA)	90	89	85	80	
L _{Aeq} (dBA)	79,85	81,04	67,47	69,54	

Caracterização de diferentes ambientes acústicos de tráfego interiores

Tráfego fluvial

	Ensaio 1	Ensaio 2
L _{Aeq,1s} mínimo (dBA)	65	67
L _{Aeq,1s} máximo (dBA)	90	87
L _{Aeq} (dBA)	76,93	79,31

Avaliação de diferentes estratégias de medição para mapeamento de ruído

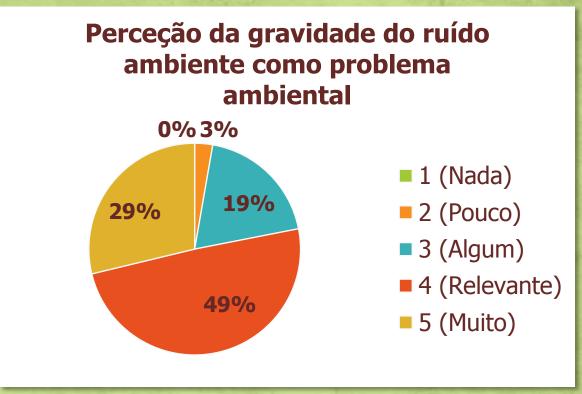
Medições estáticas

Mapa de ruído na Praça do Rossio, com uma resolução de 20 x 20 metros e baseado em medições de cinco minutos

Mapa de ruído na Praça do Rossio, com uma resolução de 50 x 50 metros e baseado em medições de cinco minutos

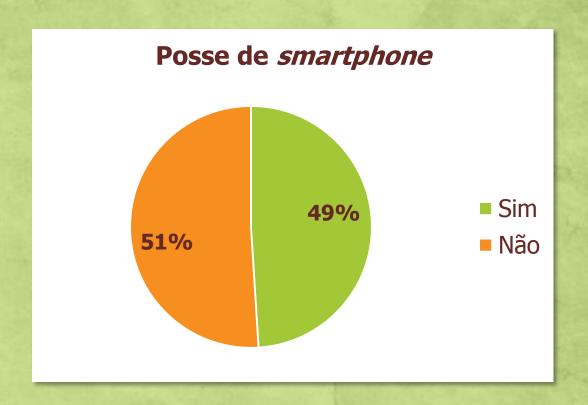
Avaliação de diferentes estratégias de medição para mapeamento de ruído

Medições em movimento



Mapa de ruído de uma área urbana

Avaliação da participação dos cidadãos no sistema de monitorização


- Total de 73 respostas
- 51% dos inquiridos sexo feminino
- 49% dos inquiridos sexo masculino

Avaliação da participação dos cidadãos no sistema de monitorização

IV. Conclusões

O recurso a voluntários na monitorização é vantajoso

 A implementação do sistema proposto implica ultrapassar alguns desafios

Quanto à participação o sistema é viável

 Os smartphones possuem características ideais para serem utilizados como sensores móveis

Conclusões

- A aplicação móvel *NoiseTube* é adequada para a realização de medições de níveis sonoros (permite obter dados confiáveis)
 - A principal limitação é a presença de velocidades de vento moderadas a elevadas

 Na avaliação de ambientes acústicos exteriores verificaram-se níveis sonoros elevados, acima dos valores legislados

 Na avaliação de ambientes acústicos interiores constatou-se que a circulação no interior de autocarro, metropolitano e cacilheiro representam um maior risco Never doubt that a small group of thoughtful, committed citizens can change the world.

Indeed, it's the only thing that ever has"

Margaret Meade

