

Influence of Abiotic Stress Factors on VOCs Emission from Portuguese Rice Paddy Fields

Relation with increased Climate Change

Mestrado Integrado em Engenharia do Ambiente Gestão de Sistemas Ambientais

Catarina Oliveira FCT,18th October 2013

Presentation layout

- □ Scope
- Objectives

Introduction

VOCs behavior on atmospheric chemistry VOCs annual variation Europe scale

Materials and methods

COTArroz location Sampling layout VOCs extraction tecnhniques VOCs analysis methods VOCs identification process

Results and discussion

GC/MS DB-5

VOCs main zone classes

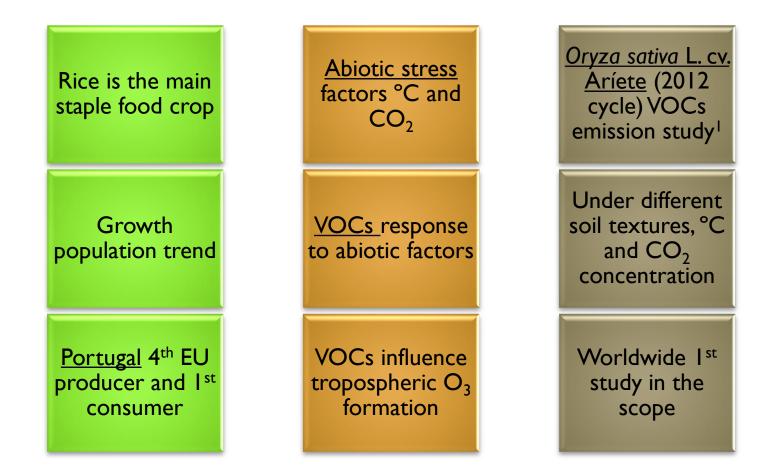
GC/MS DB-5 vs. GC/MS DB-WAX

Rice cycle phases (same T° , CO_2 and soil texture)

Soil textures (same T° , CO_2 and cycle phase)

Temperature and atmospheric CO₂ concentration (same cycle stage and soil textures)

Statistical significance - Student's t-test


Rice behaivior under climate change scenarios

Conclusions I and II

- Further researchs
- Acknowledgements

Key-words: Portugal; abiotic stress factors; VOCs; *Oryza sativa* L. cv. Aríete.

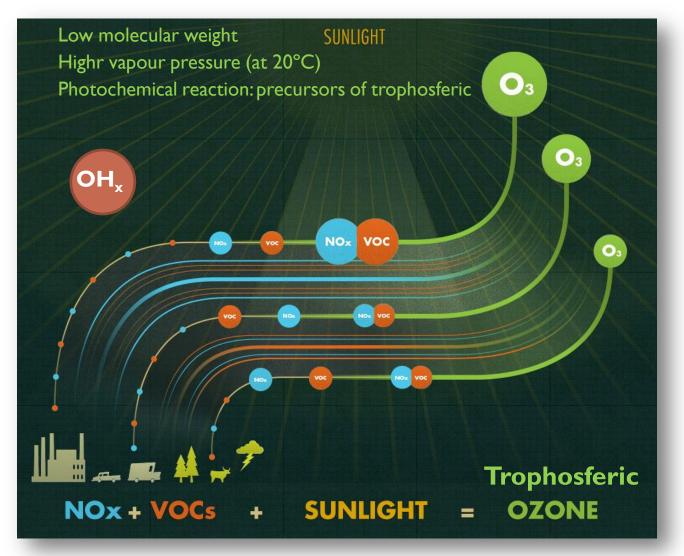
¹Project: PTDC/AGR-AAM/102529/2008 "Trace gas emission from Portuguese irrigated rice fields in contrasting soils, by the influence of crop management, climate and increased concentration of CO_2 and temperature in the atmosphere"

Objectives

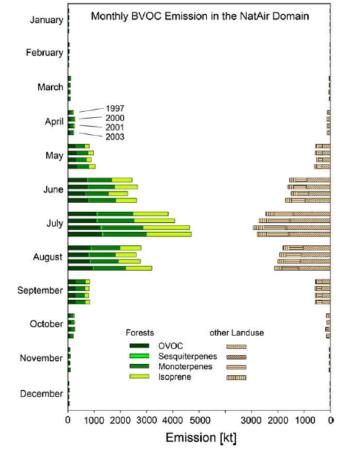
Identify

- ✓ VOCs distribution among whole rice (O. sativa L. cv. Aríete) cycle growing phases under different treatments:
 - I. soil textures (silty clay and loamy sand);
 - 2. increasing temperature;
 - 3. simultaneous temperature and CO_2 concentration enhancement.

Understand


- ✓ VOCs emission from rice field behaviour in climate change scenarios:
 - I. increasing temperature;
 - 2. increasing CO_2 concentration.

Introduction


VOCs behavior on atmospheric chemistry

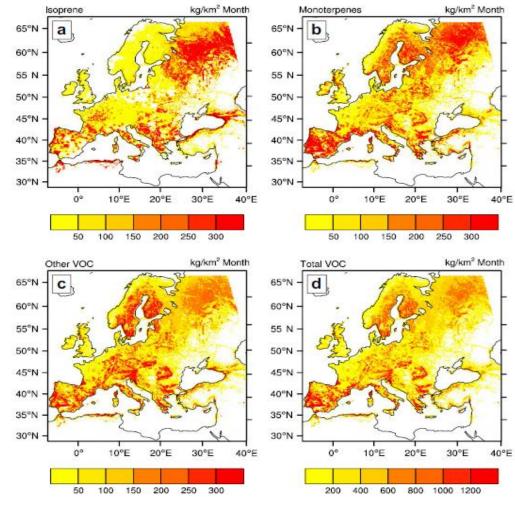
Introduction VOCs annual variation

(Source: Steinberg et al., 2009)

Emission dependence

 temperature (summer peak);
 light (mid-day peak).

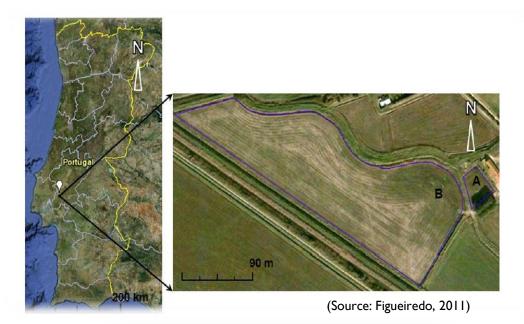
 Synthesis dependence


 photosynthesis rate;
 CO₂ (50% less).

 Other factors

- ✓ N availability;
- ✓ water availability;
- \checkmark O₃ exposure.

Introduction Europe scale



(Source: Steinbrecher et al., 2009)

- Portugal, Spain and
 Greece (oaks, eucalyptus and aromatic plants);
- Boreal forest (taiga) coniferous forests (pines, spruces and larches);
- Feedback interactions
 - ✓ temperature;
 - ✓ CO₂;
 - 🗸 biotic.

Materials and methods COTArroz location

Materials and methods Sampling layout

- □ TN Open field soil plot A (loamy sand texture)
- □ TE Open field soil plot B (silty clay texture)
- $\Box \quad TE_{C} Open Top Chamber with induced temperature$
- $\square \quad TE_{CC} Open Top Chamber with induced temperature and CO₂ concentration$

Materials and methods

Sampling layout

Treatments	Rice cycle (days)	Sampling (days)	Average and standard deviation temperature (°C)	Average and standard deviation [CO ₂] (ppm)
TN and TE		6	20,1±2,1	375,4±38,5
TE _C	158	5	22,8±2,3	398,1±33,4
TE _{cc}		5	22,0±2,2	547,3±65,7

+ I sampling + 3 °C

+ 172 ppm

Sampling date	Rice cycle phase	Samples chosen for analyses
4 th July	Vegetative	-
24 th July	Vegetative	✓
16 th August	Reproductive	✓
4 th September	Ripening	-
19 th September	Ripening	✓
26 th September	Ripening	-

Materials and methods


VOCs extraction techniques

Solid phase micro extraction (SPME)

- Divinylbenzene/Carbowax/Polydimethylsiloxane (DVB/CAR/PDMS) fiber;
- □ Fiber conditioning into hot GC injection port at 250 ⁰C for 20 min;
- 0,3 g of fresh cut rice leaves were placed in a 15 mL vial. The fiber was exposed to the vial headspace for 45 min at room temperature.

Materials and methods VOCs extraction techniques

Steam distillation extraction (SDE)

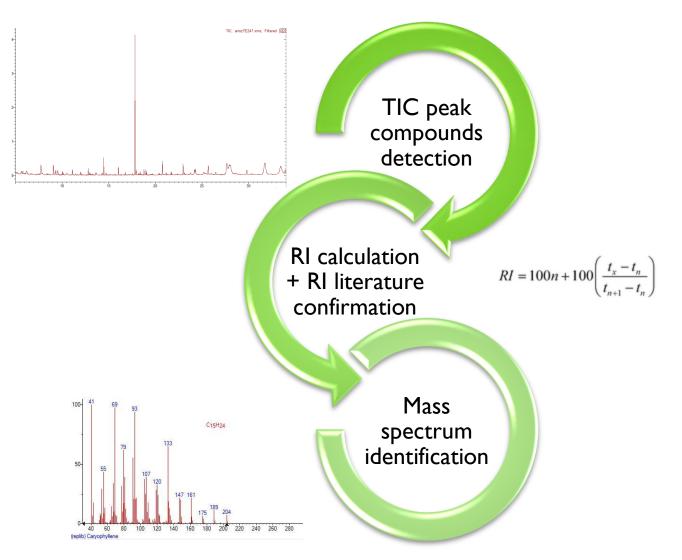
- 7 g of fresh cut rice leaves were placed into 250 mL round bottomed flask with twice-distilled water;
- Solvent: diethyl ether pentane 2:1 (v/v);
- □ 2h extraction;
- □ Extracts were stored at -20 ⁰C;
- Extracts were concentrated to final volume of I mL for analysis.

Materials and methods

VOCs analysis method

Gas Chromatography coupled with Mass Spectrometry (GC/MS)

Two stationary phases with different polarities:


- □ (gas samples) SPME → DB-5 (non polar column)
- □ (liquid samples) SDE → DB-WAX (polar column)

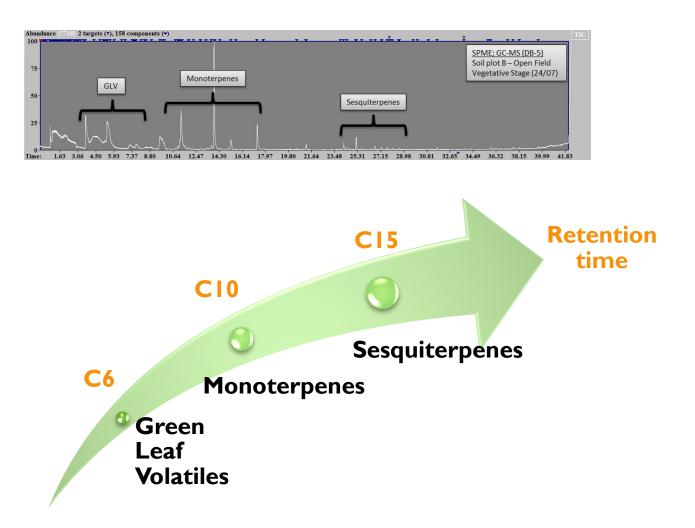
GC programmed method					
Injection type	manual				
Injection mode	splitless				
Carrier gas (constant flow)	helium (1,2 mL/min)				
T _{injection}	250 °C				
T _{ramp}	4 °C/min				
T _{initial}	40 °C				
T _{final}	200 °C				

Materials and methods

VOCs identification process

Results and discussion GC/MS DB-5

Green Leaf Volatiles


-
S
()
-
Ð
d
<u> </u>
Ð
Ţ,
0
0
Σ

Sesquiterpenes

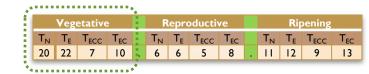
							Veg	etative	e		R	lepro	oducti	ve			Rij	pening	
	Peaks	Chemical formula	RI _{Lit}	RI _{Calc}		T_{N}	TE	T_{ECC}	T _{EC}		T _N	TE	T _{ECC}	T _{EC}		T _N	TE	T_{ECC}	T _{EC}
	4-pentanal 2-methyl	C ₆ H ₁₀ O	776	784	•		Х								•	Х	Х		
1	3-hexenal	C ₆ H ₁₀ O	796	807		Х	Х		Х		Х	Х		Х					
	2-hexenal	C ₆ H ₁₀ O	850	854		Х	Х	Х	Х		Х	X		Х		Х		Х	X
	3-hexenol	C ₆ H ₁₂ O	853	868		Х	Х	Х	Х		Х	Х	Х	Х			Х		X
	2,4-hexadienal	C₅H ₈ O	925	928		Х	Х	Х			Х	Х		Х		Х	X		
	α-pinene	C ₁₀ H ₁₆	939	943		Х	Х		Х						•		Х	Х	X
	myrcene	C10H16	989	1001															X
	phellandrene	C10H16	1004	1014					Х	•			Х						
	cymene	C10H16	1026	1032		Х	Х	Х	Х	•						Х	Х		X
	I-hexenol 2-ethyl	C ₈ H ₁₈ O	1028	1035			Х		Х			Х		Х		Х	Х		X
	limonene	C10H16	1035	1038		Х	Х	Х	Х				Х	Х		Х	Х		X
31	I,8-cineol	C10H18O	1039	1047		Х	Х	Х	Х				Х	Х		Х	Х	Х	X
	ocymene	C10H16	1050	1056			Х												X
3	α-terpinolene	C10H16	1089	1100		Х			Х										X
	benzoic acid	C ₈ H ₈ O ₂	1102	1110		Х	Х	Х					Х					Х	
	n-nonanal	C ₉ H ₁₄ O	1104	1111													Х	Х	
	linalool	C10H18O	1106	1117		Х	Х												
	2,6 nonadienal	C ₉ H ₁₄ O	1180	1191										Х				Х	
	methyl salicylate	C ₈ H ₈ O ₃	1201	1207		Х	Х												
	n-decanal	C ₁₀ H ₂₀ O	1212	1221						•	Х					Х	Х	Х	
_[β-cyclocitral	C ₁₀ H ₁₆ O	1219	1229														Х	
	• coparene	C ₁₅ H ₂₄	1386	1400	•	Х				•					•				
	elemene	C ₁₅ H ₂₄	1406	1418	•	Х	Х			•						Х			X
	β-caryophyllene	C ₁₅ H ₂₄	1425	1440	•	Х	Х			•									
	α-farnesene	C ₁₅ H ₂₄	1430	1442	•	Х	Х			•		Х			•				
	bergamotene	C ₁₅ H ₂₄	1435	1450	•	Х	Х			•					•				
	humulene	C ₁₅ H ₂₄	1455	1470	•		Х			•									
	aromadendrene	C ₁₅ H ₂₄	1462	1479	•	Х					Х				•				
	α-curcumene	C ₁₅ H ₂₄	1481	1501	•		Х			•					•				
	β-ionene	C ₁₃ H ₁₈ O	1493	1504	·					•					·	Х	Х	Х	X
	ziginberene	C ₁₅ H ₂₄	1500	1514	•	Х	Х			•					•				
	bisabolene	C ₁₅ H ₂₄	1511	1527	·					•					•				X
- [*•β-sesquipheladrene	$C_{15}H_{24}$	1523	1537		Х	Х									Х	Х		
	Total					20	22	7	10	•	6	6	5	8		Ш	12	9	13

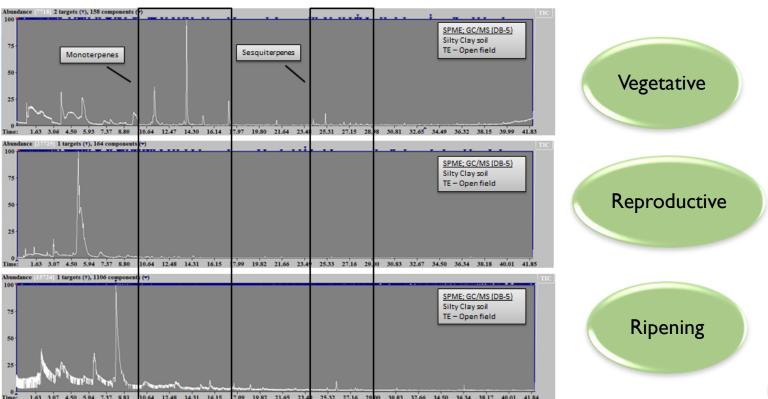
VOCs main zone classes

Results and discussion DB-5 vs DB-WAX

- Column affinity ✓ DB-5 non polar ✓ DB-WAX polar **Extraction** methods ✓ headspace SPME (gas) ✓ solvent **SDE** (liquid) SDE samples \checkmark volume extraction \checkmark concentration ✓ storage condition ✓ samples number
- Results from SPME GC/MS using DB-5 non-polar column allowed the whole rice cycle study.

FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE NOVA DE LISBOA	A DESCRIPTION OF THE PROPERTY
--	---

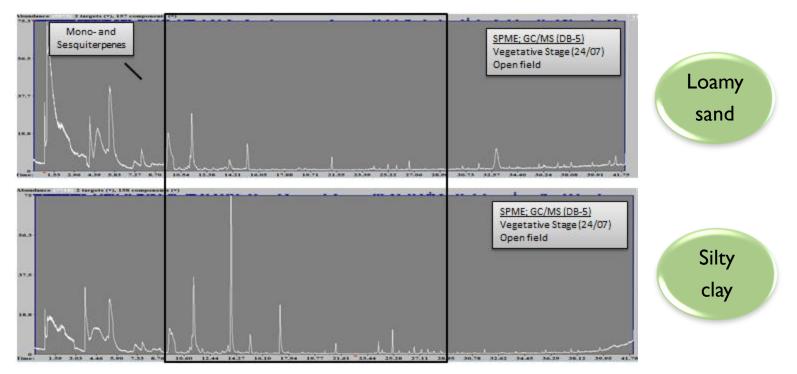

		Col	u	nns			
Peaks	Chemical	DB-5		DB-			
reaks	formula	DB-3		WAX			
2-pentanol	C ₅ H ₁₂ O			Х			
4-pentanal 2-methyl	C ₆ H ₁₀ O	 Х			 ٠.		
2-hexanone	C ₆ H ₁₂ O			Х			
n-hexanal	C ₆ H ₁₂ O			Х			
3-hexenal	C ₆ H ₁₀ O	Х					
2-hexenal	C ₆ H ₁₀ O	Х		Х		6	
3-hexenol	C ₆ H ₁₂ O	Х		Х			- '
2,4-hexadienal	C₄H ₈ O	Х					<
n-heptanal	C ₇ H ₁₄ O			Х			
n-heptenol	C ₇ H ₁₄ O			Х			
I,6 hexanediol	C ₆ H ₁₄ O ₂			Х			
n-octanal	C _s H _{i6} O			Х	 		
α-pinene	C ₁₀ H ₁₆	Х					
myrcene	C10H16	Х					
phellandrene	C ₁₀ H ₁₆	Х					
cymene	C10H16	Х		Х			
I-hexenol 2-ethyl	C ₈ H ₁₈ O	Х					
limonene	C10H16	Х					S
I,8-cineol	C ₁₀ H ₁₈ O	Х				2	
ocymene	C10H16	Х				2	2
α-terpinolene	C10H16	Х				2	ŕ
benzoic acid	C ₈ H ₈ O ₂	Х				onorerpenes	2
n-nonanal	C₀H₁₄O	Х		Х		-	ŝ
linalool	C ₁₀ H ₁₈ O	Х				ā	5
I,3 nonadienol	C ₉ H ₁₄ O			Х			5
2,6 nonadienal	C ₉ H ₁₄ O	Х		Х		G	2
methyl salicylate	C ₈ H ₈ O ₃	Х					
n-decanal	C ₁₀ H ₂₀ O	Х		Х			
decanol	C ₁₀ H ₂₀ O			Х			
β-cyclocitral	C ₁₀ H ₁₆ O	Х		Х	 ľ.		
coparene	C ₁₅ H ₂₄	Х			٠.		
elemene	C ₁₅ H ₂₄	Х					_
β-caryophyllene	C15H24	Х		Х	13	2	
α-farnesene	C15H24	Х				2	'n
bergamotene	C15H24	Х			13	4	2
cetene	C15H24			Х		2	
humulene	C15H24	Х			1.3	2	t
aromadendrene	C15H24	Х		Х			Š
α-curcumene	C15H24	Х		Х		esquirer peries	Š
β-ionene	C ₁₃ H ₁₈ O	Х		Х	13	0	D
ziginberene	C15H24	Х				-	2
bisabolene	C15H24	Х				ŭ	'n
β-sesquipheladrene	C ₁₅ H ₂₄	 Х			 		
2-pentadecanone	C ₁₈ H ₃₆ O			Х			_
Total		33		22			7



Rice cycle stages (same T° , CO_2 and soil texture)

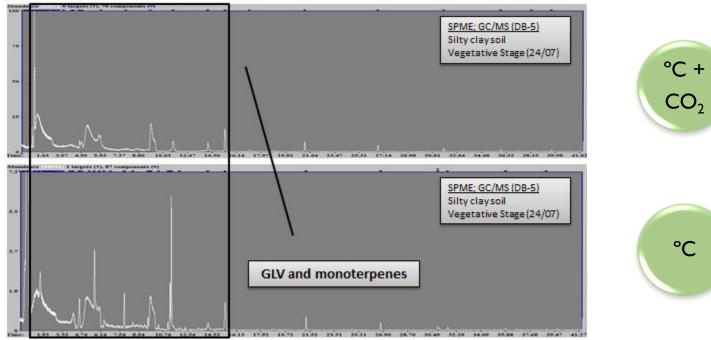
- More VOCs released at vegetative stage
 - ✓ greater rice plant activity on early developing stages;

✓ same trend in 2011 rice cycle.



Soil textures (same T°, CO₂ and cycle phase)

- More VOCs released from silty clay soil texture at vegetative and ripening stages
 - \checkmark soil proprieties and other factors



Temperature and CO₂ (same cycle stage and soil textures)

- More VOCs released under higher temperature and less under simultaneous temperature and CO₂ enhancement
 - $\checkmark\,$ thermotolerance protection function
 - ✓ photosynthesis rate changes

				•									
Vegetative			i.	Reproductive				Ripening					
T_{N}	TE	T _{ECC}	T _{EC}	ŝ.	T _N	TE	T _{ECC}	T _{EC}	T _N	TE	T _{ECC}	T _{EC}	
20	22	7	10	÷.	6	6	5	8	П	12	9	13	
		5		*							3		

For better peaks comparison this figure presents differences on chromatogram scales.

Student's t-test

One sample t-test mean (Confidence Interval)

- □ Small population size n=3; data follows normal distribution; standard deviation is unknown and is replaced by an estimation parameter.
 - ✓ At 95% of confidence in each stage, at least one treatment do not belong to CI.

 \checkmark At 99% of confidence alltreatments in all stages are within the CI.

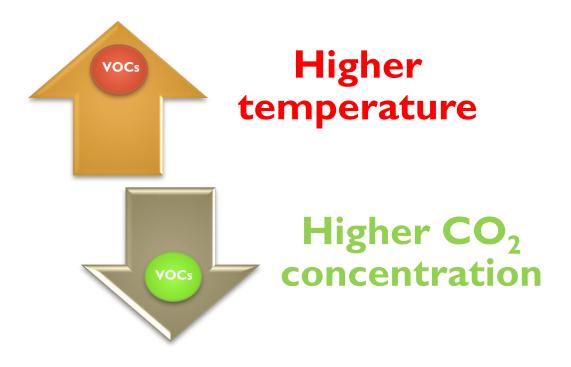
	VegetativeT_NT_ET_ECC2020227	T _{EC} T _N T _E T _{ECC} T _{EC} 1	$\begin{bmatrix} \mathbf{N} & \mathbf{T}_{E} & \mathbf{T}_{ECC} & \mathbf{T}_{EC} \\ \mathbf{I} & \mathbf{I2} & 9 & \mathbf{I3} \end{bmatrix}$	95%
Rice cycle phases	TN	TE	ΤΕ _C	TEcc
Vegetative	Cl _{µ1} = 11,3±14,4	Cl _{µ4} = 12,7±9,56	Cl _{µ7} = 5,67±4,19	Cl _{u10} = 3,00±2,03
Reproductive	$Cl_{\mu 2} = 2,67 \pm 3,67$	Cl _{µ5} = 3,67±3,08	Cl _{µ8} = 5,00±2,33	$CI_{\mu I I} = 4,03\pm2,36$
Ripening	Cl _{µ3} = 6,67±1,17	Cl _{µ6} = 5,00±6,08	Cl _{µ9} = 8,67±6,51	Cl _{µ12} = 6,00±7,30
				99%
Rice cycle phases	TN	TE	TE _c	TE _{cc}
Vegetative	Cl _{µ1} = 11,3±33,2	$CI_{\mu4} = 12,7\pm19,3$	Cl _{µ7} = 5,67±9,68	$CI_{\mu 10} = 3,00 \pm 4,70$
Reproductive	Cl _{µ2} = 2,67±5,38		Cl _{µ8} = 5,00±9,36	Cl _{µ11} = 4,03±5,38
Ripening	Cl _{µ3} = 6,67±2,69	$CI_{\mu 6} = 5,00 \pm 14,0$	Cl _{µ9} = 8,67±15,0	$CI_{\mu 12} = 6,00 \pm 16.8$

Student's t-test

Independent two sample t-test (Difference between means)

- □ Both samples size *n*=3; data follows normal distribution; both distributions have same variance;
 - $\checkmark\,$ At 99% and 95% confidence no difference between treartments means
 - At 90% of confidence, at vegetative stage, silty clay open field treatment has diference from both open top chambers

$$T_{tab99\%} = 4,60 \qquad T_{tab95\%} = 2,78 \qquad T_{tab90\%} = 2,13$$


Rice cycle phases	TN and TE	TE_{C} and TE_{CC}	TN and TE _{CC}	TN and TE _C	TE and TE _{CC}	TE and TE _C
Vegetative	T _{calc1} =0,28	T _{calc4} =2,01	T _{calc7} =2,00	T _{calc10} =1,32	T _{calc13} =2,51	T _{calc16} =2,35
Reproductive	T _{calc2} =0,90	T _{calc5} =0,52	T _{calc8} =1,73	T _{calc11} =1,20	T _{calc14} =0,57	T _{calc17} =1,75
Ripening	T _{calc3} =0,94	T _{calc6} =2,00	T _{calc9} =0,32	T _{calc12} =1,07	T _{calc15} =0,37	T _{calc18} =1,07

Rice VOCs behavior under climate change scenarios

- Vestigial emission from rice plant, however the great rice area distribution cause a potential impact on air chemistry.
- \checkmark According to the data on actual experimental conditions, higher temperature may increased VOCs emission and CO₂ may caused the reverse.

Conclusions I

Based on experimental data observations

Rice
VOCs
emissionVegetative stage released more emission.
(H: Greater activity in earlier plant stages?)

Silty clay soil texture produced more emissions than loamy sand. (H: Influence of other factors?)

Temperature increased emission. (H:Thermotolerance VOCs function?)

CO₂ concentration reduced emission. (H: Changes on photosynthesis rate?)

Conclusions 11

Climate change scenario prediction: rise temperature and CO_2 atmospheric concentration

Rice VOCs emission	Higher temperature may increase emission
	Higher CO ₂ concentration may reduce emission

Data suggests that temperature and CO_2 have influence on qualitative emission, supporting further studies on the topic

Further research

□ Influence of other abiotic stress factors

- ✓ VOCs emission on *O. sativa* L. cycle, such as:
 - I. photoperiod;
 - 2. soil moisture;
 - 3. O_3 exposure;
 - 4. N availability;
 - 5. water availability.

Identify

✓ VOCs profile among the other rice cycle varieties.

Emergent research field

✓ Study of VOCs from plant-plant and insect-plant interactions

Akcnowledgments

- To Ms. Nuno Figueiredo for field support and for informative academic material;
- To Dr. Corina Carranca for conferences invitation and for sharing information about field data;
- □ To other project partners from COTArroz for the great reception and premission for plant material collection.

Thank you!